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Theoretical Statistical Physics

Solution to Exercise Sheet 4

1 Virial coefficients (2 points)

Let the equation of state of a gas be given by1

p =
RT

v − b
e−

a

v RT . (1)

Compute the first two virial coefficients B1(T ) and B2(T ). Discuss qualitatively the shape
of the isotherms to zeroth, first, and second order in the virial expansion assuming B1 > 0
and B2 < 0.

The virial expansion yields the pressure p of a thermodynamic system in equilibrium as a power
series in the number density n/V = 1

v
. The factor in front of the 1/v2 term is called the first

virial coefficient, the one in front of 1/v3 is the second and so on. In the case of (1), using the
geometric series for RT

v−b
(where we assume v > b) and Taylor-expanding the exponential gives

p v

RT
=

1

1− b
v

e−
a

v RT =

∞∑

i=0

(
b

v

)i ∞∑

j=0

1

j!

( −a

v RT

)j

=

(

1 +
b

v
+

b2

v2
+O(v−3)

)(

1− a

v RT
+

a2

2v2R2 T 2
+O(v−3)

)

= 1 +
b

v
+

b2

v2
− a

v RT
+

a2

2v2R2 T 2
− a b

v2RT
+O(v−3)

= 1 +

(

b− a

RT

)
1

v
+

(

b2 +
a2

2R2 T 2
− a b

RT

)
1

v2
+O(v−3).

(2)

Thus,

B1(T ) = bRT − a, B2(T ) = b2RT − a b+
a2

2RT
. (3)

These coefficients give the following zeroth, first and second order virial approximations to the
pressure (1),

p0 =
RT

v
,

p1 = p0 +
B1

v2
=

RT

v
+

bRT − a

v2
,

p2 = p1 +
B2

v3
=

RT

v
+

bRT − a

v2
+

b2RT − a b+ a2

2RT

v3
.

(4)

For B1 > 0 and B2 < 0, these equations of state produce isotherms as plotted below.2 Note
however, that we can rewrite B2 as

B2(T ) = RT
(

b− a

2RT

)2
+

a2

4RT
, (5)

which is non-negative for all a, b ∈ R and R, T ≥ 0, meaning B2 < 0 is not a physical choice.

1(1) is known as the Dieterici equation of state. Similar to the van der Waals’ equation, a > 0 takes into account
molecular interactions and b > 0 models molecules of finite size.

2For this plot, we set R = 8.31 Jmol−1 K−1, T = 300K, B1 = 103 Jm3 mol−2, B2 = −103 Jm6 mol−3.
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This plot shows that higher order virial corrections become negligible for large volumes v. This
is expected since an expansion in 1/v converges quickly for large v. On the other hand, at
intermediate v ≈ 1, higher order corrections change the pressure dependence substantially. For
small v, we expect the virial approximation to break down. Indeed, the maximum of the p2-
isotherm is situated at

v2 +
2B1

RT
v − 3 |B2|

RT

!
= 0 ⇒ vmax = − B1

RT
+

√

B2
1

(RT )2
+ 3

|B2|
RT

. (6)

For volumes below vmax, the approximation p2 looses validity as evidenced by the fact that it
predicts a rapid drop in pressure (even reaching negative values) with decreasing volume.

2 Specific heat (2 points)

Show that the specific heat cV = CV /n of a van der Waals gas depends only on temperature.
Derive the adiabatic equation for this gas in case of constant cV .

The heat capacity at constant volume is defined as

CV =
∂U

∂T

∣
∣
∣
V
= T

∂S

∂T

∣
∣
∣
V
, (7)

The second equality follows from the first law dU = T dS− p dV by expanding both dU and dS
as functions of V and T and comparing coefficients of dT . Differentiating w.r.t. V at constant
T and inserting the Maxwell relation

∂S

∂V

∣
∣
∣
T
=

∂p

∂T

∣
∣
∣
V

(8)

that derives from dF = −S dT − p dV , we obtain

∂CV

∂V

∣
∣
∣
T
= T

∂2S

∂T∂V
= T

∂2p

∂2T

∣
∣
∣
V
. (9)

Van der Waals’ equation states that pressure is an affine function of the temperature,

p =
RT

v − b
− a

v2
. (10)

Thus, inserting (10) into (9), we conclude that CV (T ) is independent of the volume. The same,
of course, holds for cV .
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Alternatively, we could write the first law per mole and rearrange to get ds = 1
T
(du + p dv).

Expanding du for u = u(v, T ) and using that ds is exact yields

∂u

∂v

∣
∣
∣
T
= T

∂p

∂T

∣
∣
∣
V
− p =

a

v2
, (11)

which implies
∂cV
∂v

∣
∣
∣
T
=

∂2u

∂T∂v
= 0. (12)

To find the adiabatic equation of a van der Waals gas, we set δQ = 0 to obtain

dU =
∂U

∂T

∣
∣
∣
V
dT +

∂U

∂V

∣
∣
∣
T
dV = δW = −p dV. (13)

To compute the partial derivatives of U , we need van der Waals’s caloric equation of state. It
can be derived by integrating the first equality in (13) at constant T ,

∫ V

V0

dU =

∫ V

V0

∂U

∂V

∣
∣
∣
T
dV

(15)
=

∫ V

V0

T 2 ∂

∂T

p

T

∣
∣
∣
V
dV

(16)
=

∫ V

V0

aN2

V 2
dV (14)

where we used the Helmholtz equation

∂U

∂V

∣
∣
∣
T
= T 2 ∂

∂T

p

T

∣
∣
∣
V
, (15)

and inserted the van der Waals equation of state

p

T
=

R

v − b
− 1

T

a

v2
. (16)

Performing the integral in (14) gives

UvdW(T, V,N) = UvdW(T, V0, N)− aN2

(
1

V
− 1

V0

)

. (17)

When the volume tends to infinity, van der Waals equation of state approaches the ideal gas
law which implies UvdW → Uideal = cV T with molar heat capacity cV = CV /n = 3

2nR for a
monatomic ideal gas.3 In the limit V0 → ∞, we thus get

UvdW(T, V,N) = Uideal(T,N)− aN2

V
, (18)

From (18), we get the following partial derivatives of the internal energy,

∂U

∂T

∣
∣
∣
V
= cV ,

∂U

∂V

∣
∣
∣
T
=

a

v2
. (19)

Inserting these expressions into (13) yields

cV dT +
(

p+
a

v2

)

dV = cV dT +
RT

v − b
dV = 0. (20)

Dividing by RT and integrating results in

cV
R

ln(T ) + ln(v − b) = α ⇒ (v − b)T
cV

R = β, (21)

with β = eα an integration constant. (21) governs adiabatic processes in van der Waals gases.

3Heat capacity is the change in internal energy w.r.t. a change in temperature. Since the second term in (18)
does not depend on T , the heat capacity (at constant volume) of a van der Waals gas is the same as that of
the ideal gas.
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3 Maxwell distribution and Gaussian integrals (3 points)

Calculate the normalization N , the mean value v̄ of the absolute value of the velocity, and
the most probable value vp of the absolute value of the velocity, for the Maxwell distribution

w(v) = N exp
(
− mv

2

2 kB T

)
in three-dimensional space.

Since the Maxwell distribution is a Gaussian, its integral in any number of dimensions d factorizes
into d identical one-dimensional integrals, each again a Gaussian.

∫

Rd

w(v) ddv = N
(∫

∞

−∞

e
−

mv
2

2 kB T dv

)d

= N
(
2π kB T

m

) d

2 !
= 1. (22)

Thus

N =

(
m

2π kB T

) d

2

. (23)

The mean velocity v̄ is the expectation value of v w.r.t. to the Maxwell distribution,

v̄ =

∫

Rd

v w(v) ddv. (24)

Since we are only interested in the magnitude of the velocity vector and the Maxwell distribution
itself is isotropic, this integral is best performed in spherical coordinates with trivial angular
integration. In d = 3, we get d3v = 4π v2 dv,

v̄ = 4πN
∫

∞

0
v3 e

−
mv

2

2 kB T dv = 4πN
∫

∞

0
✁v x e

−
mx

2 kB T
dx

2✁v

= 2πN
(

−2 kB T

m
x e

−
mx

2 kB T

∣
∣
∣

∞

0
︸ ︷︷ ︸

0

+
2 kB T

m

∫
∞

0
e
−

mx

2 kB T dx

︸ ︷︷ ︸
2 kB T

m

)

=
8π k2B T 2

m2
N (23)

=

√

8 kB T

πm
,

(25)

where we first used the substitution x = v2, dx = 2v dv and then integrated by parts with
vanishing boundary terms.

The most probable velocity, vp, is simply the one for which the Maxwell distribution w(v) d3v
maximizes. One must be careful at this point not to jump to the conclusion vp = 0 based on

e
−

m v
2

2 kB T < 1 ∀v2 > 0. (26)

This would neglect the velocity-dependence of the measure itself. Reverting again to spherical
corrdinates, we can write

w(v) d3v = 4πN v2 e
−

mv
2

2 kB T

︸ ︷︷ ︸

P (v)

dv, (27)

where all v-dependence is now explicit. To find the magnitude of the velocity vp at which (27)
maximizes, we set its derivative to zero,

d

dv

(

v2 e
−

mv
2

2 kB T

)

=

(

2v − v2
mv

kB T

)

e
−

mv
2

2 kB T
!
= 0. (28)

(28) is satisfied for v = 0, which is obviously not a maximum since P (v = 0) = 0, and for

vp =

√

2kB T

m
. (29)
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Evaluating the second derivative of v2 e
−

mv
2

2 kB T at this point gives −16π
e

< 0, which identifies
vp as a maximum. Plotting the Maxwell-Boltzmann distribution at different temperatures, we
indeed find that the most probable velocity scales with vp ∝

√
T .4
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4 Phase space volume (3 points)

Show that the volume in µ-space remains invariant under time evolution, d3x d3p = d3x′ d3p′,
assuming that the external force F depends only on x but not on ẋ or higher derivatives.
Show this first in one space dimension and then argue what changes in three dimensions.

We skip the one-dimensional case. In three dimensions, the µ-space volume element d3x d3p
is centered on the point (x,p) in phase space. Under time evolution, it will be advected by
the flow of probability to a new position (x′,p′). Depending on the properties of the flow, the
volume element will be deformed, i.e. compressed in some dimensions and stretched in others.

To show that the volume of d3x d3p is conserved under time evolution despite any warping that
may take place (as long as the external force is velocity-independent), we Taylor expand

(x′(t),p′(t)) ≡ (x(t+ δt),p(t+ δt)) (30)

around t for δt ≪ 1,

(x′(t),p′(t)) = (x(t),p(t)) + (ẋ(t), ṗ(t)) δt+O(t2). (31)

Defining w = (x,p) and w
′ = (x′,p′), we can write this as

w
′(t) = w(t) + ẇ δt+O(t2). (32)

Using component notation and differentiating w.r.t. wj gives the Jacobian of time evolution,

Jij =
∂w′

i

∂wj
= δij +

∂ẇ′

i

∂wj
δt+O(t2) ≃ exp

(
∂ẇ′

i

∂wj
δt

)

+O(t2), i, j ∈ {1, . . . , 6}, (33)

which allows us to write the relation between the two volume elements as

d6w′ = det
(
J
)
d6w. (34)

4In this plot, we set the mass m = 1u ≈ 1.66× 10−27 kg to one atomic mass unit.
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For any matrix M we have ln det(M) = tr ln(M), hence

ln det
(
J
)
= tr ln

(
J
)
= tr

(
∂ẇ′

i

∂wj

)

δt+O(t2)

=

6∑

i=1

(
∂ẇ′

i

∂wi

)

δt+O(t2) = (∇w · ẇ) δt+O(t2).

(35)

Under time evolution, the volume element therefore scales with

d3x′ d3p′ = exp
[
(∇w · ẇ) δt

]
d3x d3p+O(t2). (36)

From this expression, we infer that it is the divergence of ẇ alone that governs the time evolution
of a volume element in phase space. Reexpanding ∇w · ẇ, we get

∇w · ẇ =
∂ẋi
∂xi

+
∂ṗj
∂pj

=
1

m

∂pi
∂xi

+
1

m

∂ṗj
∂ẋj

= 0. (37)

The first term vanishes because pi and xi are independent variables. In the second term, ṗj is
simply the force in j-direction which is assumed not to depend on velocity. Inserting (37) into
(36) gives

d3x′ d3p′ = d3x d3p. (38)

This results holds not only for infinitesimal time steps but the error O(δt2) vanishes even across
a finite time span ∆t = N δt with N → ∞ as δt → 0 such that ∆t remains constant, since

lim
N→∞

(

1 +O(δt2)
)N

= exp
[
NO(δt2)

]
= exp

[
∆t

δt
O(δt2)

]

δt→0−−−→ 1. (39)
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