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Theoretical Statistical Physics

Solution to Exercise Sheet 1

1 Otto motor (3 points)

Consider the cyclic process a → b → c → d → a as an idealization of the cycle of an Otto
motor,

a → b: adiabatic expansion, temperature falls from Ta to Tb;
b → c: cooling to Tc at constant volume Vmax;
c → d: adiabatic compression, temperature rises from Tc to Td;
d → a: heating to Ta at constant volume Vmin.

In a real Otto motor the heating between d and a is caused by the explosion after ignition
and chemical energy is introduced during the gas exchange. In our idealized model all parts
of the cycle are performed reversibly, and we consider the gas in the cylinder to be ideal;
energy is introduced as heat Q between d and a without changing the decomposition of the
ideal gas. The exhaust between b and c releases the heat Q′.

a) Sketch the p-V -diagram.

b) Compute the efficiency η = W/Q of the motor as a function of the temperatures Ta and
Tb, and as a function of the compression ratio Vmin/Vmax.

a) The reversible cycle of an idealized Otto motor corresponds to the following closed path
through p-V -space consisting of two parallel isochorics and two quasi-parallel adiabats.

p

V

pmax

Vmin

pmin

Vmax

a

b

c

d

⇒ Qbc

Qda ⇒

Along the adiabatic compression a → b, the piston does work on the gas by compressing it,
but no heat enters or leaves the system. The same is true for the adiabatic expansion c → d,
except now the gas does work on the piston which can be extracted to power a machine or
propel a car. Processes b → c and d → a are isochoric cooling and heating, respectively. No
work is done as that would require a change in the system’s boundaries.
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b) Since a complete cycle returns the gas to its original state of temperature, pressure and
volume, the net internal energy change ∆U must be zero. With

Qab = 0, Qbc < 0, Qcd = 0, Qda > 0,

Wab < 0, Wbc = 0, Wcd > 0, Wda = 0,
(1)

this becomes
∆U = Wab +Qbc +Wcd +Qda = 0. (2)

(2) reflects that along a → b → c, the system looses energy, which is replaced by first doing
work on and then adding heat to it in c → d → a.

The efficiency is given by the net work performed by the system (thus the minus sign)
divided by the heat added to it,1

η = −
Wcd +Wab

Qda

(2)
=

Qbc +Qda

Qda

= 1 +
Qbc

Qda

. (3)

The isochoric heat change in an ideal gas is determined by the temperature difference,

Qif =

∫ Tf

Ti

CV dT = CV (Tf − Ti), (4)

where CV = 3
2 nR for a monatomic ideal gas. Inserting (4) into (3) gives

η = 1 +
Tb − Tc

Td − Ta
. (5)

By the second law of thermodynamics, a reversible process is isentropic, i.e. it produces no
entropy. Thus

∮

dS =

∮

δQ

T
= CV

∫ Tc

Tb

dT

T
+ CV

∫ Ta

Td

dT

T
= ln

(

Ta

Td

)

+ ln

(

Tc

Tb

)

= ln

(

Ta

Td

Tc

Tb

)

!
= 0. (6)

From the last equality, it follows that Ta

Td
= Tb

Tc
, and so

η = 1−
Tb

Ta

1− Tc/Tb

1− Td/Ta
= 1−

Tb

Ta
. (7)

In order to express this i.t.o. the compression ratio Vmin/Vmax, we make use of the fact that
along adiabatic processes such as a → b we have dS = δQ/T = 0. Since dU = TdS − p dV
and dU = CV dT , this yields the adiabatic equation

dS =
dU

T
+

p

T
dV = CV

dT

T
+ nR dV

!
= 0, (8)

which we can integrate to get

ln

(

Tb

Ta

)

= −
nR

CV

ln

(

Vmax

Vmin

)

. (9)

Thus

η = 1−

(

Vmin

Vmax

)
nR
CV

. (10)

For the ideal gas Cp − CV = nR, so the exponent has the form
Cp−CV

CV
= γ − 1.

1The sign in front of the work appears because we define ∆U = Q + W , i.e. work being done on the system
counts positive.
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2 Differential forms (3 points)

a) Is the following 1-form exact?

µ = x z2 dx+ y z dy + x z dz + y z dx. (11)

b) Does the following 1-form have an integrating factor?

ν =
2y

x
dx+ dy (12)

What does the existence of an integrating factor mean geometrically?

a) An exact form is a differential that lies in the image of the exterior derivative d. Thus, µ
would be exact if there existed a differential form α of one degree less than µ s.t. µ = dα.
α would then be called a potential for µ.

In three dimensions (x, y, z) ∈ R
3, any 1-form Q is of the form

Q = A(x, y, z) dx+B(x, y, z) dy + C(x, y, z) dz. (13)

In the case of µ,

A(x, y, z) = x z2 + y z, B(y, z) = y z, C(y, z) = y z. (14)

Q is exact on a domain D ⊂ R
3 if there exists a scalar function V (x, y, z) on D such that

dV = Q, where

dV =
∂Q

∂x

∣

∣

∣

y,z
dx+

∂Q

∂y

∣

∣

∣

x,z
dy +

∂Q

∂z

∣

∣

∣

x,y
dz. (15)

Comparing coefficients of (13) and (15), we see that exactness requires

A(x, y, z) =
∂Q

∂x

∣

∣

∣

y,z
, B(x, y, z) =

∂Q

∂y

∣

∣

∣

x,z
, C(x, y, z) =

∂Q

∂z

∣

∣

∣

x,y
. (16)

At this point, we may recall Schwarz’s theorem, which states that partial derivatives of a
function commute if it is twice continuously partially differentiable. So if V (x, y, z) was
twice continuously differentiable, the following would have to hold,

∂A

∂y

∣

∣

∣

x,z
=

∂B

∂x

∣

∣

∣

y,z
,

∂A

∂z

∣

∣

∣

x,y
=

∂C

∂x

∣

∣

∣

y,z
,

∂B

∂z

∣

∣

∣

x,y
=

∂C

∂y

∣

∣

∣

x,z
. (17)

Since differentiability implies continuity and continuity in turn implies integrability on a
closed and bounded domain, we can turn Schwarz’s theorem around to mean if the second
partial derivatives of the function commute, then the function must be twice integrable. In
our case, this means that if (17) holds, V (x, y, z) must exist. Going back to (14), we see

∂A

∂y

∣

∣

∣

x,z
= z 6= 0 =

∂B

∂x

∣

∣

∣

y,z
, (18)

and similarly for the other coefficients. Thus µ is inexact.2

2If µ were exact, then its integral through Euclidean three-space from some initial point xi to some final point
xf would be path-independent, i.e.

∫
C
dµ = µ(xf )− µ(xi) for all paths C that start at xi and end at xf . If

µ could furthermore be interpreted as the differential of some thermodynamic quantity, it would constitute a
state function.
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Alternative solution A shorter, more formal way of showing that µ is not exact is to
assume we are operating on a contractible domain such as R3 or a bounded region Λ. Then
by Poincaré’s lemma, every closed form on such a domain is also exact. (The converse
always holds because d2 = 0.) A closed form Q is one that lies in the kernel of the exterior
derivative, i.e.

Q closed ⇔ Q ∈ ker(d) ⇔ dQ = 0. (19)

Calculating the exterior derivative of µ yields

dµ = −z dx ∧ dy − (2x z + y) dx ∧ dz − y dy ∧ dz + z dx ∧ dz,

= −z dx ∧ dy − (2x z + y − z) dx ∧ dz − y dy ∧ dz,
(20)

which is obviously unequal zero, meaning µ is neither closed nor exact on a contractible
domain.

b) An integrating factor is a function by which an inexact differential can be multiplied to turn
it into an exact differential.3

To determine whether or not ν has an integrating factor, we would generally multiply it by
a function f(x, y). We can then try to impose exactness on the resulting 1-form, which if it
works out, allows us to fix the form of f(x, y). Of course, if ν does not have an integrating
factor, this step will fail. For simplicity, we will assume here that the integrating factor can
in fact be taken as a function of x only. We just have to keep in mind that, in case it fails,
it doesn’t mean that ν does not have an integrating factor, as it might have worked with a
more general form of f .

f(x) ν = f(x)
2y

x
dx+ f(x) dy. (21)

Imposing exactness amounts to the equality

f(x)
2

x

!
= f ′(x), (22)

which is a separable differential equation with solution f(x) = x2. Thus ν has an integrating
factor.

Geometrically, the existence of an integrating factor means that the (multiplied) 1-form is
the gradient of some potential and that the integral of the gradient along a curve depends
only on the value of the potential at the end points.

3 Entropy of the ideal gas (4 points)

a) Formulate the 1st law in differential form and express the differential heat δQ in terms
of dT and dV .

b) Show that δQ/T is a total differential and equals dS.

c) Integrate the relation dS = δQ/T to obtain the entropy S as a function of T and V .

d) Rewrite U as a function of S and V (for dU).

a) The first law in differential form reads dU = δQ+ δW . The internal energy of an ideal gas
as a function of temperature is U(T ) = CV (T − T0). Thus, the differential heat may be
written

δQ = dU − δW = CV dT + p dV. (23)

3For instance, in thermodynamics temperature is the integrating factor that makes the entropy an exact differ-
ential.
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b) Taking the second derivatives of

δQ

T
=

CV

T
dT +

nR

V
dV, (24)

we find they agree,
∂

∂V

CV

T
= 0 =

∂

∂T

nR

V
, (25)

which makes δQ
T

a total differential.

By definition, the change in heat per temperature is the change in entropy, i.e. dS = δQ/T .

c) Integrating dS as in (24) gives

S(T, V ) = S(T0, V0) +

∫ T

T0

CV

T ′
dT ′ +

∫ V

V0

nR

V ′
dV ′

= S(T0, V0) + CV ln

(

T

T0

)

+ nR ln

(

V

V0

)

.

(26)

d) Again by definition

dU = δQ+ δW
b)
= TdS − p dV. (27)

5


	Otto motor
	Differential forms
	Entropy of the ideal gas

